Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 127
1.
Geroscience ; 2024 Mar 26.
Article En | MEDLINE | ID: mdl-38528176

An increase in systemic inflammation (inflammaging) is one of the hallmarks of aging. Epigenetic (DNA methylation) clocks can quantify the degree of biological aging and this can be reversed by lifestyle and pharmacological intervention. We aimed to investigate whether a multi-component nutritional supplement could reduce systemic inflammation and epigenetic age in healthy older adults.We recruited 80 healthy older participants (mean age ± SD: 71.85 ± 6.23; males = 31, females = 49). Blood and saliva were obtained pre and post a 12-week course of a multi-component supplement, containing: Vitamin B3, Vitamin C, Vitamin D, Omega 3 fish oils, Resveratrol, Olive fruit phenols and Astaxanthin. Plasma GDF-15 and C-reactive protein (CRP) concentrations were quantified as markers of biological aging and inflammation respectively. DNA methylation was assessed in whole blood and saliva and used to derive epigenetic age using various clock algorithms.No difference between the epigenetic and chronological ages of participants was observed pre- and post-treatment by the blood-based Horvath or Hannum clocks, or the saliva-based InflammAge clock. However, in those with epigenetic age acceleration of ≥ 2 years at baseline, a significant reduction in epigenetic age (p = 0.015) and epigenetic age acceleration (p = 0.0058) was observed post-treatment using the saliva-based InflammAge clock. No differences were observed pre- and post-treatment in plasma GDF-15 and CRP, though participants with CRP indicative of an elevated cardiovascular disease risk (hsCRP ≥ 3µg/ml), had a reduction in CRP post-supplementation (p = 0.0195).Our data suggest a possible benefit of combined nutritional supplementation in individuals with an accelerated epigenetic age and inflammaging.

2.
Crit Care Explor ; 6(2): e1044, 2024 Feb.
Article En | MEDLINE | ID: mdl-38343441

OBJECTIVES: DNA methylation can be used to determine an individual's biological age, as opposed to chronological age, an indicator of underlying health status. This study aimed to assess epigenetic age in critically ill patients with and without sepsis to determine if higher epigenetic age is associated with admission diagnosis or mortality. DESIGN: Secondary analysis of whole blood DNA methylation data generated from a nested case-control study of critically ill septic and nonseptic patients. SETTING: Four tertiary care hospitals in Canada. INTERVENTIONS: None. PATIENTS: Critically ill patients with and without sepsis. MEASUREMENTS AND MAIN RESULTS: Epigenetic age was derived from DNA methylation data using the Hannum and PhenoAge algorithms and deviation from the patient's chronological age in years was determined. Of the 66 patients with sepsis, 34 were male (51.5%), the mean age was 65.03 years and 25 patients (37.8%) died before discharge. Of the 68 nonseptic patients, 47 were male (69.1%), the mean age was 64.92 years and 25 (36.7%) died before discharge. Epigenetic age calculated using the PhenoAge algorithm showed a significant age acceleration of 4.97 years in septic patients (p = 0.045), but no significant acceleration in nonseptic patients. Epigenetic age calculated using the Hannum algorithm showed no significant acceleration in the septic or nonseptic patients. Similarly, in the combined septic and nonseptic cohorts, nonsurvivors showed an epigenetic age acceleration of 7.62 years (p = 0.004) using the PhenoAge algorithm while survivors showed no significant age acceleration. Survivor status was not associated with age acceleration using the Hannum algorithm. CONCLUSIONS: In critically ill patients, epigenetic age acceleration, as calculated by the PhenoAge algorithm, was associated with sepsis diagnosis and mortality.

3.
Immun Ageing ; 21(1): 6, 2024 Jan 11.
Article En | MEDLINE | ID: mdl-38212801

BACKGROUND: The striking increase in COVID-19 severity in older adults provides a clear example of immunesenescence, the age-related remodelling of the immune system. To better characterise the association between convalescent immunesenescence and acute disease severity, we determined the immune phenotype of COVID-19 survivors and non-infected controls. RESULTS: We performed detailed immune phenotyping of peripheral blood mononuclear cells isolated from 103 COVID-19 survivors 3-5 months post recovery who were classified as having had severe (n = 56; age 53.12 ± 11.30 years), moderate (n = 32; age 52.28 ± 11.43 years) or mild (n = 15; age 49.67 ± 7.30 years) disease and compared with age and sex-matched healthy adults (n = 59; age 50.49 ± 10.68 years). We assessed a broad range of immune cell phenotypes to generate a composite score, IMM-AGE, to determine the degree of immune senescence. We found increased immunesenescence features in severe COVID-19 survivors compared to controls including: a reduced frequency and number of naïve CD4 and CD8 T cells (p < 0.0001); increased frequency of EMRA CD4 (p < 0.003) and CD8 T cells (p < 0.001); a higher frequency (p < 0.0001) and absolute numbers (p < 0.001) of CD28-ve CD57+ve senescent CD4 and CD8 T cells; higher frequency (p < 0.003) and absolute numbers (p < 0.02) of PD-1 expressing exhausted CD8 T cells; a two-fold increase in Th17 polarisation (p < 0.0001); higher frequency of memory B cells (p < 0.001) and increased frequency (p < 0.0001) and numbers (p < 0.001) of CD57+ve senescent NK cells. As a result, the IMM-AGE score was significantly higher in severe COVID-19 survivors than in controls (p < 0.001). Few differences were seen for those with moderate disease and none for mild disease. Regression analysis revealed the only pre-existing variable influencing the IMM-AGE score was South Asian ethnicity ([Formula: see text] = 0.174, p = 0.043), with a major influence being disease severity ([Formula: see text] = 0.188, p = 0.01). CONCLUSIONS: Our analyses reveal a state of enhanced immune ageing in survivors of severe COVID-19 and suggest this could be related to SARS-Cov-2 infection. Our data support the rationale for trials of anti-immune ageing interventions for improving clinical outcomes in these patients with severe disease.

4.
Ophthalmic Genet ; : 1-5, 2024 Jan 15.
Article En | MEDLINE | ID: mdl-38224077

BACKGROUND: Biallelic variants in RTN4IP1 are a well-established cause of syndromic and nonsyndromic early-onset autosomal recessive optic neuropathy. They have more recently been reported to cause a concomitant but later-onset rod-cone dystrophy with or without syndromic features. METHODS: A comprehensive evaluation was performed that included assessment of visual and retinal function, clinical examination, and retinal imaging. Childhood ophthalmic records as well as the results of genetic testing were evaluated. RESULTS: A 24-year-old female described longstanding reduced visual acuity with more recent subjective impairment of dark adaptation. Visual acuity was subnormal in both eyes. Goldmann kinetic perimetry demonstrated scotomas in a pattern consistent with the presence of both optic neuropathy and rod-cone dystrophy with fundus exam as well as retinal imaging showing corroborating findings. Full-field electroretinography further confirmed the presence of a rod-cone dystrophy. Genetic testing demonstrated biallelic variants in RTN4IP1, one of which was novel, in association with the ocular findings. CONCLUSIONS: RTN4IP1-associated early-onset bilateral optic neuropathy with rod-cone dystrophy is a recently described clinical entity with limited reports available to-date. The present case provides additional support for this dual phenotype and identifies a novel causative variant.

5.
Nat Genet ; 56(2): 245-257, 2024 Feb.
Article En | MEDLINE | ID: mdl-38082205

Cardiac blood flow is a critical determinant of human health. However, the definition of its genetic architecture is limited by the technical challenge of capturing dynamic flow volumes from cardiac imaging at scale. We present DeepFlow, a deep-learning system to extract cardiac flow and volumes from phase-contrast cardiac magnetic resonance imaging. A mixed-linear model applied to 37,653 individuals from the UK Biobank reveals genome-wide significant associations across cardiac dynamic flow volumes spanning from aortic forward velocity to aortic regurgitation fraction. Mendelian randomization reveals a causal role for aortic root size in aortic valve regurgitation. Among the most significant contributing variants, localizing genes (near ELN, PRDM6 and ADAMTS7) are implicated in connective tissue and blood pressure pathways. Here we show that DeepFlow cardiac flow phenotyping at scale, combined with genotyping data, reinforces the contribution of connective tissue genes, blood pressure and root size to aortic valve function.


Aorta , Aortic Valve Insufficiency , Humans , Blood Flow Velocity/physiology , Magnetic Resonance Imaging/methods , Aortic Valve
6.
PLoS One ; 18(11): e0291941, 2023.
Article En | MEDLINE | ID: mdl-38032899

When designing phylogeographic investigations researchers can choose to collect many different types of molecular markers, including mitochondrial genes or genomes, SNPs from reduced representation protocols, large sequence capture data sets, and even whole genomes. Given that the statistical power and accuracy of various analyses are expected to differ depending on both the type of marker and the amount of data collected, an exploration of the variance across methodological results as a function of marker type should provide valuable information to researchers. Here we collect mitochondrial Cytochrome b sequences, whole mitochondrial genomes, single nucleotide polymorphisms (SNP)s isolated using a genotype by sequencing (GBS) protocol, sequences from ultraconserved elements, and low-coverage nuclear genomes from the North American water vole (Microtus richardsoni). We estimate genetic distances, population genetic structure, and historical demography using data from each of these datasets and compare the results across markers. As anticipated, the results exhibit differences across marker types, particularly in terms of the resolution offered by different analyses. A cost-benefit analysis indicates that SNPs collected using a GBS protocol are the most cost-effective molecular marker, with inferences that mirror those collected from the whole genome data at a fraction of the cost per sample.


Genome , Polymorphism, Single Nucleotide , Genotype , Genome/genetics , Whole Genome Sequencing , High-Throughput Nucleotide Sequencing/methods
7.
Eur Heart J Digit Health ; 4(5): 411-419, 2023 Oct.
Article En | MEDLINE | ID: mdl-37794870

Aims: Physical activity is associated with decreased incidence of the chronic diseases associated with aging. We previously demonstrated that digital interventions delivered through a smartphone app can increase short-term physical activity. Methods and results: We offered enrolment to community-living iPhone-using adults aged ≥18 years in the USA, UK, and Hong Kong who downloaded the MyHeart Counts app. After completion of a 1-week baseline period, e-consented participants were randomized to four 7-day interventions. Interventions consisted of: (i) daily personalized e-coaching based on the individual's baseline activity patterns, (ii) daily prompts to complete 10 000 steps, (iii) hourly prompts to stand following inactivity, and (iv) daily instructions to read guidelines from the American Heart Association (AHA) website. After completion of one 7-day intervention, participants subsequently randomized to the next intervention of the crossover trial. The trial was completed in a free-living setting, where neither the participants nor investigators were blinded to the intervention. The primary outcome was change in mean daily step count from baseline for each of the four interventions, assessed in a modified intention-to-treat analysis (modified in that participants had to complete 7 days of baseline monitoring and at least 1 day of an intervention to be included in analyses). This trial is registered with ClinicalTrials.gov, NCT03090321. Conclusion: Between 1 January 2017 and 1 April 2022, 4500 participants consented to enrol in the trial (a subset of the approximately 50 000 participants in the larger MyHeart Counts study), of whom 2458 completed 7 days of baseline monitoring (mean daily steps 4232 ± 73) and at least 1 day of one of the four interventions. Personalized e-coaching prompts, tailored to an individual based on their baseline activity, increased step count significantly (+402 ± 71 steps from baseline, P = 7.1⨯10-8). Hourly stand prompts (+292 steps from baseline, P = 0.00029) and a daily prompt to read AHA guidelines (+215 steps from baseline, P = 0.021) were significantly associated with increased mean daily step count, while a daily reminder to complete 10 000 steps was not (+170 steps from baseline, P = 0.11). Digital studies have a significant advantage over traditional clinical trials in that they can continuously recruit participants in a cost-effective manner, allowing for new insights provided by increased statistical power and refinement of prior signals. Here, we present a novel finding that digital interventions tailored to an individual are effective in increasing short-term physical activity in a free-living cohort. These data suggest that participants are more likely to react positively and increase their physical activity when prompts are personalized. Further studies are needed to determine the effects of digital interventions on long-term outcomes.

8.
Mol Ecol ; 32(18): 5156-5169, 2023 09.
Article En | MEDLINE | ID: mdl-37528604

Phylogeographic studies uncover hidden pathways of divergence and inform conservation. Brown bears (Ursus arctos) have one of the broadest distributions of all land mammals, ranging from Eurasia to North America, and are an important model for evolutionary studies. Although several whole genomes were available for individuals from North America, Europe and Asia, limited whole-genome data were available from Central Asia, including the highly imperilled brown bears in the Gobi Desert. To fill this knowledge gap, we sequenced whole genomes from nine Asian brown bears from the Gobi Desert of Mongolia, Northern Mongolia and the Himalayas of Pakistan. We combined these data with published brown bear sequences from Europe, Asia and North America, as well as other bear species. Our goals were to determine the evolutionary relationships among brown bear populations worldwide, their genetic diversity and their historical demography. Our analyses revealed five major lineages of brown bears based on a filtered set of 684,081 single nucleotide polymorphisms. We found distinct evolutionary lineages of brown bears in the Gobi, Himalayas, northern Mongolia, Europe and North America. The lowest level of genetic diversity and the highest level of inbreeding were found in Pakistan, the Gobi Desert and Central Italy. Furthermore, the effective population size (Ne ) for all brown bears decreased over the last 70,000 years. Our results confirm the genetic distinctiveness and ancient lineage of brown bear subspecies in the Gobi Desert of Mongolia and the Himalayas of Pakistan and highlight their importance for conservation.


Ursidae , Humans , Animals , Ursidae/genetics , Phylogeny , DNA, Mitochondrial/genetics , Biological Evolution , Demography
9.
Cornea ; 42(9): 1140-1149, 2023 Sep 01.
Article En | MEDLINE | ID: mdl-37170406

PURPOSE: The aim of this study was to assess risk for demographic variables and other health conditions that are associated with Fuchs endothelial corneal dystrophy (FECD). METHODS: We developed a FECD case-control algorithm based on structured electronic health record data and confirmed accuracy by individual review of charts at 3 Veterans Affairs (VA) Medical Centers. This algorithm was applied to the Department of VA Million Veteran Program cohort from whom sex, genetic ancestry, comorbidities, diagnostic phecodes, and laboratory values were extracted. Single-variable and multiple variable logistic regression models were used to determine the association of these risk factors with FECD diagnosis. RESULTS: Being a FECD case was associated with female sex, European genetic ancestry, and a greater number of comorbidities. Of 1417 diagnostic phecodes evaluated, 213 had a significant association with FECD, falling in both ocular and nonocular conditions, including diabetes mellitus (DM). Five of 69 laboratory values were associated with FECD, with the direction of change for 4 being consistent with DM. Insulin dependency and type 1 DM raised risk to a greater degree than type 2 DM, like other microvascular diabetic complications. CONCLUSIONS: Female sex, European ancestry, and multimorbidity increased FECD risk. Endocrine/metabolic clinic encounter codes and altered patterns of laboratory values support DM increasing FECD risk. Our results evoke a threshold model in which the FECD phenotype is intensified by DM and potentially other health conditions that alter corneal physiology. Further studies to better understand the relationship between FECD and DM are indicated and may help identify opportunities for slowing FECD progression.


Diabetes Mellitus , Fuchs' Endothelial Dystrophy , Female , Humans , Fuchs' Endothelial Dystrophy/epidemiology , Fuchs' Endothelial Dystrophy/genetics , Fuchs' Endothelial Dystrophy/diagnosis , Multimorbidity , Cornea , Risk Factors , Endothelium, Corneal , Diabetes Mellitus/epidemiology
10.
J Pharm Sci ; 112(8): 2276-2284, 2023 08.
Article En | MEDLINE | ID: mdl-37062415

Mice are rarely used in pharmacokinetic (PK) studies of ocular therapeutics due to the small size of their eyes and challenges in drug administration, tissue collection, and analysis of drug concentrations. Therefore, ocular PK of protein therapeutics in mouse eye following intravitreal (IVT) administration is not known. Here, we have presented the first of its kind investigation, to study the PK of 4 different size non-binding protein therapeutics in mouse plasma, cornea/ICB, vitreous humor, retina, and posterior cup (including choroid) following IVT administration. Administered proteins include trastuzumab (150 kDa) and F(ab)2 (100 kDa), Fab, and scFv (27 kDa) fragments of trastuzumab. An imaging and injection apparatus suitable for performing small (50 nL) IVT injections in mice was developed, and techniques for enucleation of the eye and dissection of ocular tissues were developed. Furthermore, a sensitive enzyme-linked immunosorbent assay (ELISA) for detection of proteins in very small amounts of ocular tissues were developed. It was observed that elimination from the vitreous chamber was the primary driver of PK in the cornea/ICB, retina, posterior cup, and plasma. Trastuzumab displays first-order kinetics in the vitreous humor with a half-life of 18.8 h. F(ab)2, Fab, and ScFv show biphasic PK profiles with distribution phases becoming more rapid as molecular weight decreases, and terminal elimination becoming longer as molecular weight decreases, with terminal half-lives of 16.3, 20.6, and 48.9 h, respectively. The mean residence times of trastuzumab, F(ab)2, Fab, and scFv in the vitreous humor were 26.0, 12.2, 10.7, and 8.16 h, respectively. It was found that the mean residence time in vitreous humor doubles with an increase in molecular weight of ∼69 kDa. Interestingly, the PK of proteins measured in the un-injected eye suggest the presence of a pathway for drug transfer between the eyes, which needs to be further validated. Overall, the findings presented here pave the way for drug discovery and development studies of protein therapeutics for ophthalmic indications in mice.


Antibodies, Monoclonal , Eye , Mice , Animals , Antibodies, Monoclonal/metabolism , Intravitreal Injections , Eye/metabolism , Vitreous Body/metabolism , Trastuzumab , Immunoglobulin Fragments/metabolism
11.
Pac Symp Biocomput ; 28: 413-424, 2023.
Article En | MEDLINE | ID: mdl-36540996

A major goal of precision medicine is to stratify patients based on their genetic risk for a disease to inform future screening and intervention strategies. For conditions like primary open-angle glaucoma (POAG), the genetic risk architecture is complicated with multiple variants contributing small effects on risk. Following the tepid success of genome-wide association studies for high-effect disease risk variant discovery, genetic risk scores (GRS), which collate effects from multiple genetic variants into a single measure, have shown promise for disease risk stratification. We assessed the application of GRS for POAG risk stratification in Hispanic-descent (HIS) and European-descent (EUR) Veterans in the Million Veteran Program. Unweighted and cross-ancestry meta-weighted GRS were calculated based on 127 genomic variants identified in the most recent report of cross-ancestry POAG meta-analyses. We found that both GRS types were associated with POAG case-control status and performed similarly in HIS and EUR Veterans. This trend was also seen in our subset analysis of HIS Veterans with less than 50% EUR global genetic ancestry. Our findings highlight the importance of evaluating GRS based on known POAG risk variants in different ancestry groups and emphasize the need for more multi-ancestry POAG genetic studies.


Glaucoma, Open-Angle , Veterans , Humans , Genome-Wide Association Study , Genetic Predisposition to Disease , Glaucoma, Open-Angle/genetics , Glaucoma, Open-Angle/diagnosis , Computational Biology , Risk Factors , Hispanic or Latino/genetics , Polymorphism, Single Nucleotide
12.
Eur Heart J ; 44(2): 89-99, 2023 01 07.
Article En | MEDLINE | ID: mdl-36478054

Cardiometabolic diseases contribute more to global morbidity and mortality than any other group of disorders. Polygenic risk scores (PRSs), the weighted summation of individually small-effect genetic variants, represent an advance in our ability to predict the development and complications of cardiometabolic diseases. This article reviews the evidence supporting the use of PRS in seven common cardiometabolic diseases: coronary artery disease (CAD), stroke, hypertension, heart failure and cardiomyopathies, obesity, atrial fibrillation (AF), and type 2 diabetes mellitus (T2DM). Data suggest that PRS for CAD, AF, and T2DM consistently improves prediction when incorporated into existing clinical risk tools. In other areas such as ischaemic stroke and hypertension, clinical application appears premature but emerging evidence suggests that the study of larger and more diverse populations coupled with more granular phenotyping will propel the translation of PRS into practical clinical prediction tools.


Atrial Fibrillation , Brain Ischemia , Coronary Artery Disease , Diabetes Mellitus, Type 2 , Hypertension , Stroke , Humans , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Risk Factors , Coronary Artery Disease/epidemiology , Coronary Artery Disease/genetics , Hypertension/epidemiology , Hypertension/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study
13.
Genome Biol Evol ; 14(8)2022 08 03.
Article En | MEDLINE | ID: mdl-35906926

Methylobacterium is a group of methylotrophic microbes associated with soil, fresh water, and particularly the phyllosphere, the aerial part of plants that has been well studied in terms of physiology but whose evolutionary history and taxonomy are unclear. Recent work has suggested that Methylobacterium is much more diverse than thought previously, questioning its status as an ecologically and phylogenetically coherent taxonomic genus. However, taxonomic and evolutionary studies of Methylobacterium have mostly been restricted to model species, often isolated from habitats other than the phyllosphere and have yet to utilize comprehensive phylogenomic methods to examine gene trees, gene content, or synteny. By analyzing 189 Methylobacterium genomes from a wide range of habitats, including the phyllosphere, we inferred a robust phylogenetic tree while explicitly accounting for the impact of horizontal gene transfer (HGT). We showed that Methylobacterium contains four evolutionarily distinct groups of bacteria (namely A, B, C, D), characterized by different genome size, GC content, gene content, and genome architecture, revealing the dynamic nature of Methylobacterium genomes. In addition to recovering 59 described species, we identified 45 candidate species, mostly phyllosphere-associated, stressing the significance of plants as a reservoir of Methylobacterium diversity. We inferred an ancient transition from a free-living lifestyle to association with plant roots in Methylobacteriaceae ancestor, followed by phyllosphere association of three of the major groups (A, B, D), whose early branching in Methylobacterium history has been heavily obscured by HGT. Together, our work lays the foundations for a thorough redefinition of Methylobacterium taxonomy, beginning with the abandonment of Methylorubrum.


Methylobacterium , Ecosystem , Phylogeny , Plant Leaves , Plants/genetics , RNA, Ribosomal, 16S/genetics
14.
Mol Ecol ; 31(16): 4402-4416, 2022 08.
Article En | MEDLINE | ID: mdl-35780485

Pleistocene glacial cycles drastically changed the distributions of taxa endemic to temperate rainforests in the Pacific Northwest, with many experiencing reduced habitat suitability during glacial periods. In this study, we investigate whether glacial cycles promoted intraspecific divergence and whether subsequent range changes led to secondary contact and gene flow. For seven invertebrate species endemic to the PNW, we estimated species distribution models (SDMs) and projected them onto current and historical climate conditions to assess how habitat suitability changed during glacial cycles. Using single nucleotide polymorphism (SNP) data from these species, we assessed population genetic structure and used a machine-learning approach to compare models with and without gene flow between populations upon secondary contact after the last glacial maximum (LGM). Finally, we estimated divergence times and rates of gene flow between populations. SDMs suggest that there was less suitable habitat in the North Cascades and Northern Rocky Mountains during glacial compared to interglacial periods, resulting in reduced habitat suitability and increased habitat fragmentation during the LGM. Our genomic data identify population structure in all taxa, and support gene flow upon secondary contact in five of the seven taxa. Parameter estimates suggest that population divergences date to the later Pleistocene for most populations. Our results support a role of refugial dynamics in driving intraspecific divergence in the Cascades Range. In these invertebrates, population structure often does not correspond to current biogeographic or environmental barriers. Rather, population structure may reflect refugial lineages that have since expanded their ranges, often leading to secondary contact between once isolated lineages.


Genetic Variation , Refugium , Ecosystem , Genetic Variation/genetics , Phylogeny , Phylogeography
15.
Evolution ; 76(9): 2004-2019, 2022 09.
Article En | MEDLINE | ID: mdl-35778920

Discovery of cryptic species is essential to understand the process of speciation and assessing the impacts of anthropogenic stressors. Here, we used genomic data to test for cryptic species diversity within an ecologically well-known radiation of North American rodents, western chipmunks (Tamias). We assembled a de novo reference genome for a single species (Tamias minimus) combined with new and published targeted sequence-capture data for 21,551 autosomal and 493 X-linked loci sampled from 121 individuals spanning 22 species. We identified at least two cryptic lineages corresponding with an isolated subspecies of least chipmunk (T. minimus grisescens) and with a restricted subspecies of the yellow-pine chipmunk (Tamias amoenus cratericus) known only from around the extensive Craters of the Moon lava flow. Additional population-level sequence data revealed that the so-called Crater chipmunk is a distinct species that is abundant throughout the coniferous forests of southern Idaho. This cryptic lineage does not appear to be most closely related to the ecologically and phenotypically similar yellow-pine chipmunk but does show evidence for recurrent hybridization with this and other species.


Hybridization, Genetic , Sciuridae , Animals , Genomics , Idaho , Microsatellite Repeats , Phylogeny , Sciuridae/genetics
16.
Circulation ; 146(8): e93-e118, 2022 08 23.
Article En | MEDLINE | ID: mdl-35862132

Cardiovascular disease is the leading contributor to years lost due to disability or premature death among adults. Current efforts focus on risk prediction and risk factor mitigation' which have been recognized for the past half-century. However, despite advances, risk prediction remains imprecise with persistently high rates of incident cardiovascular disease. Genetic characterization has been proposed as an approach to enable earlier and potentially tailored prevention. Rare mendelian pathogenic variants predisposing to cardiometabolic conditions have long been known to contribute to disease risk in some families. However, twin and familial aggregation studies imply that diverse cardiovascular conditions are heritable in the general population. Significant technological and methodological advances since the Human Genome Project are facilitating population-based comprehensive genetic profiling at decreasing costs. Genome-wide association studies from such endeavors continue to elucidate causal mechanisms for cardiovascular diseases. Systematic cataloging for cardiovascular risk alleles also enabled the development of polygenic risk scores. Genetic profiling is becoming widespread in large-scale research, including in health care-associated biobanks, randomized controlled trials, and direct-to-consumer profiling in tens of millions of people. Thus, individuals and their physicians are increasingly presented with polygenic risk scores for cardiovascular conditions in clinical encounters. In this scientific statement, we review the contemporary science, clinical considerations, and future challenges for polygenic risk scores for cardiovascular diseases. We selected 5 cardiometabolic diseases (coronary artery disease, hypercholesterolemia, type 2 diabetes, atrial fibrillation, and venous thromboembolic disease) and response to drug therapy and offer provisional guidance to health care professionals, researchers, policymakers, and patients.


Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Adult , American Heart Association , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Multifactorial Inheritance/genetics , Risk Factors
17.
Ophthalmology ; 129(11): 1263-1274, 2022 Nov.
Article En | MEDLINE | ID: mdl-35718050

PURPOSE: Primary open-angle glaucoma (POAG) is a degenerative eye disease for which early treatment is critical to mitigate visual impairment and irreversible blindness. POAG-associated loci individually confer incremental risk. Genetic risk score(s) (GRS) could enable POAG risk stratification. Despite significantly higher POAG burden among individuals of African ancestry (AFR), GRS are limited in this population. A recent large-scale, multi-ancestry meta-analysis identified 127 POAG-associated loci and calculated cross-ancestry and ancestry-specific effect estimates, including in European ancestry (EUR) and AFR individuals. We assessed the utility of the 127-variant GRS for POAG risk stratification in EUR and AFR Veterans in the Million Veteran Program (MVP). We also explored the association between GRS and documented invasive glaucoma surgery (IGS). DESIGN: Cross-sectional study. PARTICIPANTS: MVP Veterans with imputed genetic data, including 5830 POAG cases (445 with IGS documented in the electronic health record) and 64 476 controls. METHODS: We tested unweighted and weighted GRS of 127 published risk variants in EUR (3382 cases and 58 811 controls) and AFR (2448 cases and 5665 controls) Veterans in the MVP. Weighted GRS were calculated using effect estimates from the most recently published report of cross-ancestry and ancestry-specific meta-analyses. We also evaluated GRS in POAG cases with documented IGS. MAIN OUTCOME MEASURES: Performance of 127-variant GRS in EUR and AFR Veterans for POAG risk stratification and association with documented IGS. RESULTS: GRS were significantly associated with POAG (P < 5 × 10-5) in both groups; a higher proportion of EUR compared with AFR were consistently categorized in the top GRS decile (21.9%-23.6% and 12.9%-14.5%, respectively). Only GRS weighted by ancestry-specific effect estimates were associated with IGS documentation in AFR cases; all GRS types were associated with IGS in EUR cases. CONCLUSIONS: Varied performance of the GRS for POAG risk stratification and documented IGS association in EUR and AFR Veterans highlights (1) the complex risk architecture of POAG, (2) the importance of diverse representation in genomics studies that inform GRS construction and evaluation, and (3) the necessity of expanding diverse POAG-related genomic data so that GRS can equitably aid in screening individuals at high risk of POAG and who may require more aggressive treatment.


Glaucoma, Open-Angle , Veterans , Humans , Glaucoma, Open-Angle/diagnosis , Glaucoma, Open-Angle/epidemiology , Glaucoma, Open-Angle/genetics , Genome-Wide Association Study , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Cross-Sectional Studies , Case-Control Studies , Risk Factors
18.
Hepatol Commun ; 6(7): 1516-1526, 2022 07.
Article En | MEDLINE | ID: mdl-35293152

Genetic predisposition and unhealthy lifestyle are risk factors for nonalcoholic fatty liver disease (NAFLD). We investigated whether the genetic risk of NAFLD is modified by physical activity, muscular fitness, and/or adiposity. In up to 242,524 UK Biobank participants without excessive alcohol intake or known liver disease, we examined cross-sectional interactions and joint associations of physical activity, muscular fitness, body mass index (BMI), and a genetic risk score (GRS) with alanine aminotransferase (ALT) levels and the proxy definition for suspected NAFLD of ALT levels > 30 U/L in women and >40 U/L in men. Genetic predisposition to NAFLD was quantified using a GRS consisting of 68 loci known to be associated with chronically elevated ALT. Physical activity was assessed using accelerometry, and muscular fitness was estimated by measuring handgrip strength. We found that increased physical activity and grip strength modestly attenuate genetic predisposition to elevation in ALT levels, whereas higher BMI markedly amplifies it (all p values < 0.001). Among those with normal weight and high level of physical activity, the odds of suspected NAFLD were 1.6-fold higher in those with high versus low genetic risk (reference group). In those with high genetic risk, the odds of suspected NAFLD were 12-fold higher in obese participants with low physical activity versus those with normal weight and high physical activity (odds ratio for NAFLD = 19.2 and 1.6, respectively, vs. reference group). Conclusion: In individuals with high genetic predisposition for NAFLD, maintaining a normal body weight and increased physical activity may reduce the risk of NAFLD.


Non-alcoholic Fatty Liver Disease , Adiposity/genetics , Cross-Sectional Studies , Exercise , Female , Genetic Predisposition to Disease , Hand Strength , Humans , Male , Non-alcoholic Fatty Liver Disease/epidemiology , Obesity/complications , Risk Factors
19.
Mol Ecol ; 31(10): 2985-3001, 2022 05.
Article En | MEDLINE | ID: mdl-35322900

The disjunct temperate rainforests of the Pacific Northwest of North America (PNW) are characterized by late-successional dominant tree species Thuja plicata (western redcedar) and Tsuga heterophylla (western hemlock). The demographic histories of these species, along with the PNW rainforest ecosystem in its entirety, have been heavily impacted by geological and climatic changes the PNW has experienced over the last 5 million years, including mountain orogeny and repeated Pleistocene glaciations. These environmental events have ultimately shaped the history of these species, with inland populations potentially being extirpated during the Pleistocene glaciations. Here, we collect genomic data for both species across their ranges to test multiple demographic models, each reflecting a different phylogeographical hypothesis on how the ecosystem-dominating species may have responded to dramatic climatic change. Our results indicate that inland and coastal populations in both species diverged ~2.5 million years ago in the early Pleistocene and experienced decreases in population size during glacial cycles, with subsequent population expansion. Importantly, we found evidence for gene flow between coastal and inland populations during the mid-Holocene. It is likely that intermittent migration in these species during this time has prevented allopatric speciation via genetic drift alone. In conclusion, our results from combining genomic data and demographic inference procedures establish that populations of the ecosystem dominants Thuja plicata and Tsuga heterophylla persisted in refugia located in both the coastal and inland regions of the PNW throughout the Pleistocene, with populations expanding and contracting in response to glacial cycles with occasional gene flow.


Ecosystem , Rainforest , Genetic Variation , Genomics , North America , Phylogeny , Phylogeography
20.
JACC Case Rep ; 4(5): 271-275, 2022 Mar 02.
Article En | MEDLINE | ID: mdl-35257101

We present a case of pericardial amyloidosis with associated lymphoplasmacytic lymphoma in a patient with chronic worsening shortness of breath and cough. This case highlights the wide variation in the presentation of cardiac amyloidosis, and the rare occurrence of clinically significant light-chain and heavy-chain amyloidosis in the pericardium. (Level of Difficulty: Advanced.).

...